Prozessdetails: FabrikH2-DZ-2030

1.1 Beschreibung

Wasserstoff-Elektrolyseur zur H2-Herstellung, inkl. Strombedarf für Wasseraufbereitung nach #1
Das gängige Verfahren ist die konventionelle alkalische Elektrolyse bei Temperaturen bis etwa 90°C und "leichtem" Überdruck bis etwa 10 bar. Druckelektrolyseure (ab etwa 30 bar) haben den Vorteil, den Kompressionsaufwand für den Pipelinetransport oder die Verflüssigung zu reduzieren; sie sind für 35 bis 100 bar verfügbar, aber aufwendig. Seit geraumer Zeit mit wechselnder Intensität in der Entwicklung sind Hochtemperatur(HT)elektrolyseure, bei denen der Strombedarf reduziert wird, indem die Dissoziationsenergie (Gibbs-Energie, Freie Enthalpie) des Wassers thermisch (T um 800°C) reduziert wird. Bei der Membranelektrolyse schließlich soll der Verbrauch durch direkt auf der Membran angebrachte Elektroden reduziert werden. Der Einfluss der Größe auf die Effizienz von Elektrolyseanlagen ist nach [LBST 2001] und [concawe 2006] gering. Zwischen zentralen und dezentralen Anlagen bestünde danach energetisch kein großer Unterschied. Die Datengenerierung orientiert sich am Konzept der Druckelektrolyse (#2 folgend Ausgangsdruck 30 bar), die bereits relativ ausgereift und effizient ist. Die drucklose Elektrolyse hat dagegen eine geringere Effizienz, die Hochtemperaturelektrolyse bedarf noch erheblicher Entwicklungsarbeit. Wichtige Literaturdaten und die hier abgeschätzten Rechenwerte sind in folgender Tabelle zusammengefasst.
Erläuterungen
Energieverbrauch: [Bossel et al. 2005] und [LBST 2001] dokumentieren und verwenden sehr ähnliche Werte. Die Rechenwerte orientieren sich wie folgt an den Quellen:
zentral
2005: Maximum der Bandbreite
2020: Minimum der Bandbreite
2030: 2020 reduziert um die Hälfte der Reduktion 05/20
Verluste: über den Energieverbrauch erfasst
Weitere Luftschadstoffemissionen: keine
Betriebsstoffe, feste Reststoffe: Es werden wahrscheinlich zur Wasseraufbereitung geringe Menge verschiedener Chemikalien und bei der Elektrolyse selbst geringe Mengen KaOH eingesetzt. Mengenangaben dazu bzw. zu den Reststoffen liegen nicht vor. Hilfsweise wird der Einsatz an NaOH pro kg Cl2 bei der Chlor-Alkali-Elektrolyse gemäß [ecoinvent 2004] angesetzt. Es erfolgt keine Differenzierung nach Bezugsjahren (hohe Unsicherheiten des Basiswertes bei absehbar geringen Änderungen).
Flächenbedarf: [LBST 2001] enthält Flächenangaben, die hier für zentrale und dezentrale Anlagen und für alle Bezugsjahre identisch übernommen werden.
Materialvorleistungen: [LBST 2001] gibt Massenangaben zu verfügbaren und in Entwicklung befindlichen Elektrolysemodulen (25 bzw. 11 t / 68 kg H2 / h) sowie für einen Puffer-Druckspeicher. Für die Bezugsjahre werden nur die Elektrolyseurmassen variiert (20, 15, 12,5 t). Mit Lebensdauer und Volllaststunden wird der Einsatz pro MJ berechnet. Die Materialanteile werden gemäß [ecoinvent 2004] für generische Chemieanlagen angesetzt.
Kosteninformationen (Investitions- und Betriebskosten)
Investitionskosten: In [Nitsch 2003] werden für alkalische Elektrolyseanlagen für "heute" (2003, hier = 2005) und 2020 Investitionskosten angegeben, die hier übernommen werden (Umrechnung Bezug Kapazität in Menge mit 25 Jahren Lebensdauer und 90% Verfügbarkeit). 2030 wird aus 2020 mit der Hälfte der Reduktion 2005/20 abgeschätzt.
Betriebskosten: Es liegen keine Daten vor. In erster Näherung können sie aus dem Energieverbrauch und dem Personaleinsatz abgeschätzt werden. Für die Stromkosten werden für 2005 und 2020 die Mittelwerte Windkraft offshore küstennah und küstenfern jeweils für mittlere Windverhältnisse aus [DLR et al. 2004] angesetzt, 2030 wird gleich 2020 gesetzt. Für den Personalstundensatz wird der Wert nach [StatBA 2007] für den Sektor Energie- und Wasserversorgung angesetzt.
Personaleinsatz (Personen je Anlage bzw. Durchsatz): Hierzu liegen keine direkten Informationen vor. Eine grobe Abschätzung erfolgt über den Personaleinsatz in der Stromerzeugung in Deutschland 2005 [BMWi 2007]: Arbeitszeit / MJ Brutto-Strom = Arbeitszeit / MJ H2. Es erfolgt keine Differenzierung nach Bezugsjahren (hohe Unsicherheiten des Basiswertes bei absehbar geringen Änderungen).

1.2 Referenzen

  1. Patyk, Andreas 2008: Stoffstrom- und Kostendaten zu LNG, H2 und Synthetischem Rohöl; Dokumentation; Arbeitspapier i.A. des Öko-Instituts im Rahmen des BMU-geförderten Verbundvorhabens "renewbility"; Heidelberg
  2. Originaldokumentation von 'FabrikH2-DZ-2030'

1.3 ProBas-Anmerkungen

Kurzinfo: Datensatz aus GEMIS. Negative Werte durch Gutschriftenrechnung. Werte des Prozesses in Spalte ‚Prozess direkt’, Werte des Prozesses einschließlich Vorkette in Spalte ‚Prozess inkl. Vorkette’. Weiter…

GEMIS steht für „Globales Emissions-Modell Integrierter Systeme&“; es ist ein Softwaretool des Öko-Instituts. GEMIS wurde 1987 erstmals angewendet und wird seitdem weiterentwickelt.

Die GEMIS-Datensätze beruhen - je nach Anwendung - auf unterschiedlichen Methoden; auch der zeitliche und der örtliche Bezug der Datensätze sind verschieden.

Methode bei Prozessen mit mehreren Outputs:

Zur Modellierung der Datensätze zu Multi-Output Prozessen wird in GEMIS die Methode der Systemerweiterung verwendet. Hierbei werden Datensätze, in denen jeweils alle Inputs, alle Outputs und alle Umweltaspekte eines Multi-Output Prozesses ausgewiesen sind, als „Brutto&“ bezeichnet. Durch Subtraktion von ‚Bonus’-Prozessen, die jeweils einen der Outputs auf herkömmliche Weise bereitstellen, entsteht ein Nettoprozess, in denen das substituierte Nebenprodukt als Gutschrift erscheint. Die Gutschrift ist dabei kein realer Output des Prozesses, sondern ein rechnerischer ‚Merker’.

Beispiel (s.a. Bild 1):

Multi-Output Prozess Biogas-BZ-MC-HKW-D-2020/brutto: Output ist 1 TJ Elektrizität und 0,6 TJ Wärme, der „Netto&“-Datensatz soll sich aber nur auf die Elektrizität beziehen. Durch Subtraktion des Bonusprozesses Wärme-Bonus-Gas-Hzg-D-2020 mit dem Output Wärme(0,6 TJ) entsteht der „Netto&“-Datensatz Biogas-BZ-MC-HKW-D-2020/Gas, für den als Output 1 TJ Elektrizität und 0,6 TJ ‚Gutschrift Wärme-Bonus-für-KWK (Bio)-2020 bei Wärme-Bonus-Gas-Hzg-D-2020’ angegeben werden; die Gutschrift stellt keinen Stoff- oder Energiefluss des Prozesses dar, sie ist allein rechnerisch begründet.

Bild 1: Beispiel zur GEMIS-Methode der Gutschriftsrechnung / Systemerweiterung

Transport:

Angaben zu den angesetzten Transportdistanzen werden nicht gegeben.

Abschneidekriterien:

Wasser wird in der Regel nur auf der Inputseite angegeben (etwa als Kühlwasser), auch wenn es den Prozess wieder verlässt als Abwasser.
Weitere Angaben zu angewendeten Abschneidekriterien werden nicht gegeben.

Besondere Nomenklatur:

Zahlreiche Abkürzungen für Brennstoffe aus Biomasse und entsprechende Technologien, siehe Glossar #link#.

Besonderheiten auf Datensatzebene:

Die Datensätze sind mit Vorketten-Datensätzen verknüpft, in denen die jeweils benötigten Vorprodukte, Energien und Transportleistungen erzeugt werden. Die Daten zu den Umweltaspekten werden erstens „direkt&“ (d.h., nur aus dem jeweiligen Prozess, falls dieser direkt zu Umweltaspekten beiträgt) als auch „mit Vorkette&“ (d.h., einschließlich aller vorausgehenden Prozesse) ausgewiesen.
Negative Werte für Stoffflüsse kommen in GEMIS regelmäßig vor; sie entstehen durch die Anwendung von Systemerweiterung (#link auf Systemerweiterung oben) um Multi-Output Prozesse in Single Output Prozesse umzurechnen.
Teilweise werden Aufwendungen für Produktionsmittel (Anlagen, Fahrzeuge etc.) aufgeführt (als Stoffflüsse im Input); diese sind jedoch nicht auf die funktionelle Einheit bezogen, sondern werden als absolute Werte angegeben; sie werden nur als Input und nicht als Output (Entsorgung der Betriebsmittel) angegeben.
Die durch die Herstellung dieser Produktionsmittel verursachten Umweltaspekte sind dagegen über Leistung, jährliche Auslastung und Lebensdauer auf die funktionelle Einheit bezogen

Weiterführende Hinweise und Literatur:

#1: Fritsche, U.R., Schmidt, K.: Globales Emissions-Modell Integrierter Systeme (GEMIS), Version 4.2, Handbuch, Darmstadt, August 2004.
#2: Fritsche, U.R., Schmidt, K.: Globales Emissions-Modell Integrierter Systeme (GEMIS), Version 4.1, Handbuch, Darmstadt, Darmstadt, Januar 2003.
#3: Fritsche, U., et al.: Stoffstromanalyse zur nachhaltigen energetischen Nutzung von Biomasse, Verbundprojekt gefördert vom BMU im Rahmen des ZIP, Projektträger: FZ Jülich, Mai 2004, Anhangband zum Endbericht.
#4: Fritsche, U., et al.: Umweltanalyse von Energie-, Transport- und Stoffsystemen: Gesamt-Emissions-Modell integrierter Systeme (GEMIS) Version 2.1 - erweiterter und aktualisierter Endbericht, U. Fritsche u.a., i.A. des Hessischen Ministeriums für Umwelt, Energie und Bundesangelegenheiten (HMUEB), veröffentlicht durch HMUEB, Wiesbaden 1995

Website: http://www.gemis.de

1.4 Weitere Metadaten

Quelle Öko-Institut
Projekte GEMIS-Stammdaten
Bearbeitet durch IINAS - International Institute for Sustainability Analysis
Datensatzprüfung ja
Ortsbezug Marokko
Zeitbezug 2030

1.5 Technische Kennwerte

Funktionelle Einheit 1 TJ H2 (energetisch)
Auslastung 7000 h/a
Brenn-/Einsatzstoff Elektrizität
Flächeninanspruchnahme 8400 m²
gesicherte Leistung 100 %
Jahr 2030
Lebensdauer 25 a
Leistung 75 MW
Nutzungsgrad 67,8 %
Produkt Brennstoffe-Sonstige

Funktionelle Einheit ist »1 TJ H2 (energetisch)«.

Inputs - Aufwendungen für den Prozess

Input Aus Vorprozess Menge Einheit
Elektrizität Solar-PV-multi-Rahmen-mit-Rack-DZ-2030 1,48 TJ

Inputs - Aufwendungen für Produktionsmittel

Produkt Aus Vorprozess Menge Einheit
Aluminium MetallAluminium-mix-DE-2030 300000 kg
Stahl MetallStahl-Elektro-DE-2030 2499975 kg

Outputs

Output Menge Einheit
H2 (energetisch) 1 TJ
Zum Seitenanfang

Funktionelle Einheit ist »1 TJ H2 (energetisch)«.

Ressourcen

Ressource inkl. Vorkette Einheit
Abwärme -5,59*10-9 TJ
Atomkraft 0,00674 TJ
Biomasse-Anbau 114 kg
Biomasse-Anbau 0,00257 TJ
Biomasse-Reststoffe 0,277 kg
Biomasse-Reststoffe 0,00958 TJ
Braunkohle 0,00919 TJ
Eisen-Schrott 568 kg
Erdgas 0,129 TJ
Erdgas 77,9 kg
Erdöl 0,0159 TJ
Erdöl 313 kg
Erze 3002 kg
Fe-Schrott 75,2*10-6 kg
Geothermie 0,000462 TJ
Luft 284 kg
Mineralien 1982 kg
Müll 0,0037 TJ
NE-Schrott 45,4 kg
Sekundärrohstoffe 136 kg
Sekundärrohstoffe 0,00612 TJ
Sonne 1,48 TJ
Steinkohle 0,0516 TJ
Wasser 110611 kg
Wasserkraft 0,00808 TJ
Wind 0,0126 TJ

Ressourcen (Aggregierte Werte, KEA, KEV, KRA)

Ressource inkl. Vorkette Einheit
KEA-andere 0,00982 TJ
KEA-erneuerbar 1,51 TJ
KEA-nichterneuerbar 0,228 TJ
KEV-andere 0,00982 TJ
KEV-erneuerbar 1,51 TJ
KEV-nichterneuerbar 0,212 TJ

Luftemissionen

Luftemission inkl. Vorkette Einheit
As (Luft) 0,000141 kg
Cd (Luft) 0,000116 kg
CH4 47,6 kg
CO 439 kg
CO2 14887 kg
Cr (Luft) 0,000613 kg
H2S 0,00972 kg
HCl 0,21 kg
HF 0,227 kg
HFC-125 0 kg
HFC-134 0 kg
HFC-134a 0 kg
HFC-143 0 kg
HFC-143a 0 kg
HFC-152a 0 kg
HFC-227 0 kg
HFC-23 0 kg
HFC-236 0 kg
HFC-245 0 kg
HFC-32 0 kg
HFC-43-10mee 0 kg
Hg (Luft) 0,000199 kg
N2O 0,522 kg
NH3 0,0914 kg
Ni (Luft) 0,000942 kg
NMVOC 1,73 kg
NOx 24,8 kg
PAH (Luft) 52*10-9 kg
Pb (Luft) 0,0388 kg
PCDD/F (Luft) 5,77*10-9 kg
Perfluoraethan 0,0163 kg
Perfluorbutan 0 kg
Perfluorcyclobutan 0 kg
Perfluorhexan 0 kg
Perfluormethan 0,127 kg
Perfluorpentan 0 kg
Perfluorpropan 0 kg
SF6 0 kg
SO2 19,7 kg
Staub 12,5 kg

Luftemissionen (Aggregierte Werte, TOPP-Äquivalent, SO2-Äquivalent, inkl. Vorkette)

Luftemission inkl. Vorkette Einheit
CO2-Äquivalent 17367 kg
SO2-Äquivalent 37,7 kg
TOPP-Äquivalent 80,9 kg

Gewässereinleitungen

Gewässereinleitung inkl. Vorkette Einheit
anorg. Salze 90,2 kg
AOX 17,6*10-6 kg
As (Abwasser) 1,84*10-9 kg
BSB5 2,06 kg
Cd (Abwasser) 4,49*10-9 kg
Cr (Abwasser) 4,44*10-9 kg
CSB 71 kg
Hg (Abwasser) 2,24*10-9 kg
Müll-atomar (hochaktiv) 0,00267 kg
N 0,00373 kg
P 0,000136 kg
Pb (Abwasser) 29,3*10-9 kg

Abfälle

Abfall direkt inkl. Vorkette Einheit
Abraum 0 24656 kg
Asche 0 292 kg
Produktionsabfall 0 2284 kg
REA-Reststoff 0 51,3 kg
Zum Seitenanfang